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1. INTRODUCTION

The General Forestry Directorate (DGF) of the Ministry of Livestock, Agriculture and 
Fisheries (MGAP), in coordination with the National Directorate of Climate Change 
(DINACC) of the Ministry of Environment (MA), submit this      report linked to the native 
forest key performance indicator      (KPI-2) of      the Sovereign Sustainability-linked Bond 
(SSLB). This KPI (KPI-2) is based on native forest area estimates (     in hectares), through 
the use of satellite mapping and remote sensing techniques, following the provisions of 
the Intergovernmental Panel on Climate Change (IPCC, 2006) and the IPCC Good Practice 
Guidance on Land Use, Land Use Change and Forestry (IPCC, 2003). The methodologies 
used to calculate KPI performance are the same as those used by Uruguay to report 
progress on its Nationally Determined Contributions (NDCs) to the United Nations. 

The framework for the issuance of the SSLB was prepared by the Ministry of Economy 
and Finance (MEF), the Ministry of Industry, Energy and Mining (MIEM), the Ministry of 
Foreign Affairs (MRE), the      MA      and the      MGAP     . It is a cornerstone for Uruguay's 
access to the sustainable sovereign finance market and, above all, it aspires to become 
an alternative approach to sustainability-linked debt financing. Uruguay seeks to 
implement a symmetrical rate reward and penalty structure, tying the country's cost of 
capital to achieving the climate and nature conservation targets based on      the 
commitments made under the Paris Agreement. The main goal is to tie sustainable 
finance to achieving concrete, material, and visible climate performance targets, 
sustained by a robust reporting and verification system and driven by the actions, 
policies, and investments needed. The Inter-American Development Bank (IDB) and the 
United Nations Development Programme (UNDP) provided critical technical assistance 
for this project. 

This document describes the methodology used to map native forest cover in Uruguay 
in 2021—based on satellite image processing techniques—to estimate KPI-2 of the SSLB: 
Preservation of native forest area (in hectares) compared to the baseline year (in %). 

Mapping efforts were coordinated by the Evaluation and Information Unit of the DGF of 
the MGAP together with the      DINACC of the MA and carried out by a team of 6 technical 
experts: a mapping technical supervisor,      a statistics expert in charge of the validation, 
and five interpreters trained in the interpretation of land use/land cover from satellite 
images, who were involved in post-classification, editing, and validation. 

2. MATERIALS AND METHODS

The proposed workflow resulted in the supervised object-based classification of satellite 
images captured through Sentinel sensors by the European Space Agency (ESA) to map 
native forest cover.  
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Image classification entails extracting classes of information from a multiband image. 
The methodology used was specifically developed and adjusted to the characteristics of 
the Uruguayan forests.  

The processing and analysis of open-access satellite imagery were conducted using the 
Google Earth Engine (GEE) cloud computing platform (Gorelick et al., 2017), while 
geoprocessing tasks were performed using QGIS and ArcGIS Pro software.      The 
following figure (Figure 1) outlines the different stages of the methodology used to build 
the native forest map, further described later in this report: Data search and selection; 
Supervised classification; Post-classification; Accuracy assessment. 

Figure 1: 2021 Native forest mapping process outline 

The "Validation of Uruguay's Native Forest Mapping through Sentinel 2021 imagery" 
report describes the accuracy assessment process for validating the map and its results. 

2.1. Data search and selection 

2.1.1. Satellite data 
The search for prepared data for analysis, intercalibrated, that      meets      geometric 
and radiometric quality requirements was carried out in the cloud using the GEE 
platform. Scenes were selected considering factors such as the presence of clouds and 
nearest dates amongst the chosen images, taking the period between October 2021 and 
February 2022 as a reference. Time series      images close to the spring-summer period 
were selected so that      spectral signal reflecting the photosynthetic activity of the native 
forest was clear. In this way, the leaf senescence period of many species is avoided, and 
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classification errors due to misinterpretation with other coverages are reduced. This 
makes it possible to obtain a more accurate mapping of the native forest. 

It has been shown that the integration of SAR (synthetic aperture radar) satellite imagery 
with multispectral imagery (such as Sentinel-2 imagery) can improve the accuracy of 
land use/land cover classifications (e.g., Dobrinić et al., 2020; Heckel et al., 2020; 
Solórzano et al., 2021). Based on the study's objectives, satellite data from different 
sensors (Sentinel-1 and Sentinel-2) was merged in the same working environment. 
Sentinel-2 sensor images were used to take advantage of the spectral discrimination 
potential of its optical instruments, combined with images from the Sentinel-1 sensor 
(SAR) for cloud-free data.  

The Shuttle Radar Topography Mission (SRTM; Farr et al., 2007) digital elevation model 
was also      employed for the classification. It was used for the following topographic 
variables: elevation (meters) and slope (degrees). The SRTM is an open-access global 
product using radar interferometry with a spatial resolution of 30 meters. The model 
was acquired for the territory of Uruguay, resampled to a spatial resolution of 10 meters, 
and added to the data stack within the GEE platform     . This type of topographic 
information, combined with multitemporal imagery, can help differentiate native 
forests from other land uses that may lead to misinterpretation and have been 
successfully used in classifications by forest type (Liu et al., 2018; Hościło and 
Lewandowska, 2019).  

Images from the Sentinel-1 Ground Range Detected (GRD) collection available in the GEE 
data catalog are already pre-processed regarding thermal noise, radiometric calibration, 
and terrain correction. C-band images obtained from this sensor between October 2021 
and February 2022 were used, with a spatial resolution of 10 meters in the downward 
mode, in dual polarization (VH and VV polarizations separately).  

Subsequently, a median reducer was applied to each polarization to generate time series 
data (median composite image), which are less susceptible to image acquisition 
conditions. The image time series median is a commonly used statistical indicator 
successfully applied in land use classification (Mahdianpari et al., 2018; Liu et al., 2019). 

A composite of Sentinel-2 MultiSpectral Instrument (MSI) images was made, using 
reducers to choose the median values from the pixel stack collection.      . This collection 
is structured to obtain full image composites for the entire area under study without 
gaps      by selecting all images that met the date (October 1, 2021, to March 1, 2022) 
and cloud filter parameters. Level 2A images (with radiometric and atmospheric 
corrections) were used. Level 2A products are delivered with a constant ground 
sampling distance of 10, 20, and 60 meters, depending on the native resolution of the 
different spectral bands.      Multispectral images from      Sentinel-2 have 13 spectral 
bands: four 10-meter bands, six 20-meter bands, and three 60-meter spatial resolution 
bands (Table 1).  

All Sentinel-2 bands      with 10- and 20-meter spatial resolution (resampled to 10 meters) 
were selected,      using surface reflectance values, i.e., already incorporated atmospheric 
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corrections. In addition to      traditional bands of the visible and near-infrared (NIR) 
spectrum,      Red Edge bands (B5, B6, B7, and 8A) were employed, which are related to 
chlorophyll content of the vegetation,      along with      SWIR bands (B11 and B12), related 
to water content. Since these collections are geometrically and radiometrically 
corrected, the only correction required was      cloudy pixels masking     (clouds and cloud 
shadows     ). The presence of clouds and cloud shadows in satellite images is one of the 
processing drawbacks. This is why GEE has a feature for filtering or masking cloudy 
pixels. The maskS2clouds function of the GEE platform was used for filtering.  

Table 1. Wavelength and spatial resolution of Sentinel-2 bands. Source: National Geographic Institute of 
Spain (IGN). 

Similar to the Sentinel-1 data, a temporal median reducer was applied to all Sentinel-2 
scenes, producing seasonal optical features for classification tasks. The median reducer 
function enables the production of cloud-free seasonal datasets, where noisy, very dark, 
or very bright pixels are also removed.           Sentinel-2 median composite      for the 
visible spectrum bands (RGB) was downloaded      as a raster      for further segmentation. 

In addition, several spectral indices were calculated from the original Sentinel-2 image 
bands to add this information into the multiband stack and use them as input data for 
the classifier algorithm. A spectral index results from remote sensing data through 
spectral band calculations (Jackson and Huete, 1991). The indices used were: NDVI 
(Normalized Difference Vegetation Index) (Rouse et al., 1974), EVI (Enhanced Vegetation 
Index) (Justice et al., 1998), NDWI (Normalized Difference Water Index) (Gao, 1996), and 
MSAVI (Modified Soil-Adjusted Vegetation Index) (Richardson and Wiegand, 1977).  

The multiband stack was completed by calculating statistical indicators of the time series 
(median, min, max, and variance) for each of the Sentinel-2 bands used and for each of 
the spectral indices for the entire image time series (from October 1, 2021, to March 1, 

Band 1 - Coastal Aerosol 

Band 2 - Blue 0.490 10 

Band 3 - Green 0.560 10 

Band 4 - Red 0.665 10 

Band 5 - Vegeta�on R ed Edge  0.705 20 

Band 6 - Vegeta�on R ed Edge  0.740 20 

Band 7 - Vegeta�on R ed Edge  0.783 20 

Band 8 - NIR 0.842 10 

0.865 20 Band 8A - Vegeta�on R ed Edge  

Band 9 - Water vapor 0.945 60 

Band 10 - SWIR - Cirrus 1.375 60 

Band 11 - SWIR 1.610 20 

Band 12 - SWIR 2.190 20 

Sen�nel -2 Band 
0.443 60 

Central wavelength (μm) Spa�al r esolu�on (m)  
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2022). For NDVI, four monthly medians for the November/2021 to February/2022 
period were also added to the multiband stack. These metrics can be      directly applied 
to the bands or derived indices, and represent the different seasonal stages of land cover 
influenced by vegetation phenological regimes, hydrological regimes or land use 
(Muro et al., 2020). A total of 64 satellite data bands (Figure 2 and Figure 3) were used 
as input elements by the classifier algorithm.  

     Figure 2. Summary of satellite data used by the classifier algorithm. 

    Figure 3: Google Earth Engine Screenshot showing the bands used for classification. 
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2.1.2. Selection of training samples 
For the design of the classification legend, the following conceptual definitions were 
used to differentiate       land use/land cover categories.       

Native forest: areas covered by vegetation associations dominated by trees that 
maintain their natural characteristics. All types of native forests are included in this 
category.  

The following operational definition of native forest was used for selecting training 
samples and post-classification editing:      area with a canopy cover of native species 
greater than or equal to 30 % and a minimum land area of 0.5 ha. This definition does 
not consider tree height or other thresholds, such as minimum width.  

Forest plantations: areas primarily made up of planted      alien species trees, mostly 
Pinus and Eucalyptus. This includes standing commercial plantations, shelterbelts     , and 
shade trees of exotic species, as well as established protective forests.      

*"Native forest" and "Forest plantations" make up the "Forest cover" category used in 
the first stage of the classification. 

Non-forest cover: this class includes those areas that showed above-ground biomass 
but no predominant tree component when satellite images were taken (natural 
grasslands, wetlands, scrub or shrublands, agricultural crops, vegetable crops, 
implanted pastures, and urbanized areas covered with herbaceous or shrub vegetation, 
without a predominant tree component). 

Non-vegetation cover: this class includes those areas that did not show above-ground 
biomass when satellite images were taken (bare soil, urbanized area      and sand). 

Water     : includes inland water bodies, both natural and artificial. Given the spatial 
resolution of the images used and within the scope of the supervised classification 
process, some watercourses with a channel width of at least 10 m were included. 

Some examples (Figure 4 and Figure 5) of the categories used in      the native forest map 
are shown below, using a visualization of Google Earth images (left) compared to 
Sentinel-2 subscenes (right) in a false-color visualization (combination of B8/B11/B3).      
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Figure 4: Visualization of Google Earth images and Sentinel-2 subscenes, showing the native forest class: 
a) riparian or riverside forest; b) ravine      forest; c)      open or “park” forest; d) hills           forest. 

Figure 5: View of Google Earth images and Sentinel-2 subscenes, showing the classes corresponding to: 
a) Non-vegetation cover (urbanized area); b) Non-forest cover (agricultural crops); c) Forest plantations;

d) Water surfaces.

Some of the challenges involved in mapping native forests in Uruguay are: their low 
relative surface area compared to the total territory; confusion with forest plantations 
of exotic species, both commercial and non-commercial; low tree density in some cases 
(“park” forests); fragmentation and distribution in "patches" of certain forests (hills   
forests) (Betancourt, 2021). Additionally, there is a certain similarity in the spectral 
response of some native forests (mainly riparian zones) with certain wetlands in the 
country, which makes it even more difficult to discriminate between them using remote 
sensing techniques.          
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Given the nature of these ecosystems and the difficulties in accurately identifying them 
through remote sensing, it is quite possible that a pixel-based classification that 
attempts to predict areas of native forest cover includes possible false positives (e.g., 
forest plantations                scrub or shrublands, wetlands).      Below are some examples 
of potential confusion between different      vegetation cover classes that can hinder the 
remote sensing of native forests in Uruguay (Figure 6). 

Figure 6: View of Google Earth images and Sentinel-2 subscenes, showing some land covers often 
confused      with      native forests: a) wetlands; b) young forest plantation; c) mix of exotic      and 

native tree species. 

Considering the above mentioned challenges, special care was taken in selecting training 
samples for this classification.  

The selection of training samples was performed by manual digitization of training 
polygons in the GEE platform based on accurate visual interpretation of Sentinel-2 image 
composites (in their true-color and false-color displays) for the period under study. In 
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addition, high-resolution satellite images, available in Google Earth base     maps within 
the GEE platform, were also used as supplementary information.  

On these composites, polygons were selected on the types of land cover      representing 
the different classes to be identified in each classification stage. Homogeneous sites 
were considered for reference sample collection to mitigate the effect of mixed pixels 
by avoiding fragmented or heterogeneous land cover areas. 

T     raining polygons were homogeneously and randomly distributed throughout the 
territory, trying to cover all regions of the country and forest types, as shown in Figure 
7.  

In the first run of the classifier, the number of training polygons was evenly assigned for 
each class defined in the two classification stages. Subsequently, based on expert 
judgment,       a greater number of samples were added for the classes of interest and 
those with higher spectral heterogeneity (forest stratum classes and non-forest cover) 
in areas where confusion between classes was observed.       

Figure 7: Location of the selected training samples by class. 

A total of 498 polygons were digitized to train the classifier algorithm for the two 
classification stages; each pixel (10 meters on a side) within these polygons      was      the 
sampling unit     .  
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As outlined in the following section, the native forest map was built based on two 
supervised classifications: the first to obtain a base layer of forest cover and the second 
to distinguish between native forest and forest plantations for more accurate 
discrimination between these two classes.  

The following were interpreted in the first stage: 102 polygons for the "Forest cover" 
class (14,823 pixels); 89 polygons for the "Non-forest cover" class (12,472 pixels); 46 
polygons for the "Non-vegetation cover" class (6,550 pixels); 41 polygons for "Water 
(6,955 pixels). For the second stage, the following were defined for the "Forest cover" 
class: 93 polygons of the "Native forest" class (10,195 pixels); 83 polygons of "Forest 
plantations" (9,207 pixels); 44 polygons of "Other cover/non-forest cover" (5,887 pixels), 
corresponding to areas of confusion in the initial classification, where no predominant 
tree cover was observed when interpreting the reference images.       

Table 2. Summary of selected training samples for each class. 

2.2. Supervised classification 

Classification of digital satellite data is the process in which image pixels are grouped 
into individual classes or categories based on their similarity in data values (Chuvieco, 
2010). Supervised classification uses spectral information obtained from samples 
corresponding to different types of coverage to classify an entire image or a mosaic of 
photos. In this case, the classifier used the data from the combination of bands and 
indexes established for each image in the stack (Figure 2), assigning a class to each 
composite      pixel. This stage was also carried out on the GEE platform. 

A two-level classification scheme was selected to produce a layer corresponding to 
native forest cover. In the first stage (forest cover detection), a supervised classification 
was applied to distinguish a forest layer (area covered by forest plantations and native 
or natural forests), distinguishing it from the rest of the land cover and then masking 
over this layer and applying a new supervised classification. The second stage (native 
forest detection) implied      distinguishing native forests within the forest cover mask. 
Thus, the      classes for the first classification comprised     : Water     , Forest cover, Non-

Class
1st stage

Forest cover

Non-forest cover

Non-vegeta�on c over

Water 

2nd stage

Na�v e fores   t
Forest planta�ons

Non-forest cover

Number of polygons

102

89

46

41

93

83

44

14,823

12,472

6,550

6,955

10,195

9,207

5,887
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forest cover, and Non-vegetation cover. The      second stage of the classification 
comprised three classes: Native Forest, Forest Plantations, and Other Cover/Non-forest 
Cover (this class included sites that were not clear during the first classification stage, 
where the cover did not correspond to forest cover). 

2.2.1. Forest cover detection 
The first stage of the classification consists of an initial stratification into four land cover 
classes: Water     , Forest cover, Non-forest cover, and Non-vegetation cover.  

A "mask" is created based on this classification to detect all areas whose cover 
corresponds to the forest layer (planted or native). For this purpose, training samples 
were selected for each layer based on the types of coverages of the different classes to 
be detected at this stage. Supervised classification relies on all the information in the 
multiband stack—obtained from the training samples corresponding to other land 
use/land cover types—to classify the entire image composite.  

The GEE platform was used, applying the non-parametric Random Forest classification 
model (Breiman, 2001) with 100 decision trees as the main parameter and the 
aforementioned subset of training samples. This algorithm is a powerful classification 
tool; it is highly accurate, can handle large data sets, and is less computer-intensive than 
other methods (Gislason et al., 2006). Random Forest is a learning method that operates 
by averaging many randomly generated decision trees for a single low-variance, high-
accuracy final model (Breiman, 2001; Liaw and Wiener, 2002). 

2.2.2.      Native forest cover detection 
Once the "mask" layer of the forest cover is available, it is classified into three classes: 
Native Forest,      Forest Plantations, and Other Cover/Non-forest Cover. A very similar 
process to the previous one is performed, with the same Random Forest classifier 
algorithm (and same parameters), but with the training samples corresponding to the 
second stage of the classification (Table 2) and masking based on the previous mosaic 
so that only      pixels corresponding to      tree cover area are classified. The selection of 
training samples for classification was also made through visual interpretation based on 
the composite image and high-resolution images available.  

The majority tool was used at this classification stage; it is a pixel filter to remove the so-
called "salt and pepper" or isolated pixel effect, thus smoothing the resulting product. 
As a result, a layer corresponding to the forests considered within the scope of this 
activity (i.e., only the category "Native forest") was obtained,      , which was downloaded 
in raster format for further processing. 
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2.3. Post-classification 

2.3.1. Segmentation 
     Sentinel-2 composite image was segmented using the ArcGIS Pro software 
segmentation tool based on its spectral information, to perform an object-based image 
assessment.  

Object-based image assessment provides an alternative methodology to pixel-based 
assessment, using a combination of shape     , size, and spectral information to classify 
image data (Hay et al., 2005). Objects or segments are regions produced by one or more 
homogeneity criteria in one or more dimensions (Blaschke, 2010). These objects 
originate from an image segmentation process in which pixels close to each other and 
similar spectral characteristics are grouped into a segment, representing land elements. 

Ideally, a segmented image will represent discrete objects while representing them 
completely and separately from neighboring objects. A group of neighboring pixels 
(grouped based on their spectral homogeneity and spatial arrangement) can better 
represent object features than individual pixels (Whiteside et al., 2011), making it easier 
to manage the resulting data. One of the advantages of segmentation is that it creates 
objects representing land cover types that can be spectrally variable at the pixel level, 
thus removing the so-called "salt and pepper" effect, which is very common in pixel-
based classifications (Whiteside et al., 2011). 

The parameters used to segment the Sentinel-2 image composite were: Spatial Range 
(20), Spectral Detail (18), and Minimum Segment Size (50).  

     Spatial Range refers to the relevance you want to assign to the proximity between 
image features, with a range of values from 1 to 20. Smaller values produce uniform and 
spatially smoother results between clustered areas, while higher values are more 
appropriate when the elements under study are small and must be combined (Wessel 
et al., 2018). 

Spectral Detail sets the relevance given to the spectral differences of the image features, 
with values from 1 to 20. Lower values result in more smoothing and longer processing 
times, while higher values are appropriate for features that must be classified separately 
but have similar spectral characteristics (Wessel et al., 2018; ESRI, 2022).  

     Minimum segment size      is directly related to      the minimum mapping unit. Smaller 
segments of this size are merged with their best-fitting neighboring segment. The unit 
of this parameter      is expressed in pixels; since we have 50 pixels in this case, the 
minimum mapping unit is equivalent to 0.5 hectares, as described in the operational 
definition of native forest. 

     The result is a finite set of objects that do not      have yet a classification category 
assigned, which is done in a subsequent process. Both the segmentation products 
(shapefile) and the supervised classification were exported for further 
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editing/corrections in a GIS environment. Figure 8 shows a Sentinel-2 composite 
sample site, and Figure 9 shows the result after segmentation.  

Figure 8: Sentinel-2 composite subscene      (true color display      B4/B3/B2). 

Figure 9: Example of Sentinel-2 image segmentation with true      color display as basemap. 

2.3.2. Segment type calculation 
In this phase of the process, the Zonal Statistics tool in QGIS software was used to assign 
a class to      each object (segment)      by calculating the majority statistic,      determining 
the majority class for each segment. In this case, the classes were Native forest/Non-
forest       

To do this, the vector file (shapefile format) generated in the previous step and the 
native forest classification in raster format, downloaded from the GEE platform, were 
used.      This produced a new column in the input vector file—in this case, in the file 
containing the segments—with the binary value of the majority numerical class for each 
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segment (1=Native forest; 0=Non forest). The "Non-forest" category of the preliminary 
map encompasses all segments where most cover belongs to other land covers that are 
not "native forest." 

2.3.3. Post-classification editing 
Once the categorized segments were obtained (     Native forest/     Non-forest), a review 
was carried out by a team of five interpreters to verify whether their classification was 
aligned with the supporting      data (high-resolution satellite and aerial images     ). To 
facilitate the review of the categorized segments, a grid was created to maintain 
organization for the editing work,      dividing the territory      into five      zones, with each 
interpreter assigned to a specific zone.       

Corrections were made by visual interpretation of the segments that had been 
misclassified in the previous stage, based on the high-resolution images available 
(Google Satellite, ESRI Satellite, aerial orthophotos of the Spatial Data Infrastructure of 
Uruguay [IDEUy]) and the Sentinel-2 image composite from      the same dates used for 
classification. These misclassified objects were assigned the correct cover type class 
(Native Forest/Non-Forest).  

The same operational definitions of native forests mentioned earlier in the document 
were used in this stage. As several interpreters were involved, they were trained and 
were in communication throughout the process to ensure consistency and agree on a 
common approach to labeling those segments.  

This methodology was developed to overcome the challenges involved     in accurately 
mapping native forests in Uruguay and distinguishing them from other      land use/land 
cover types that may have      similarities in their spectral behavior measured through 
remote sensing sensors.       

In this final stage of post-classification editing,      the objective was to correct  the 
confusions of the preliminary map.      In particular, certain confusions that may persist 
between native forests and forest plantations are detected      in this stage through visual 
interpretation based on differences in texture, stand shape, and planting scheme.      

Figure 10 shows an example of the post-classification visual editing process of the 
segments. There, a segment misclassified in the preliminary map as "Non-forest" is 
shown     , which actually met the criteria of the operational definition of native forest, 
and it was manually assigned the class of "Native forest"      (Figure 10(c); purple 
segment). There are also two segments (Figure 10(c); orange segments), which had been 
misclassified in the preliminary map as "Native Forest" but were then labeled as "Non-
forest" in the final map because they did not meet the minimum percentage of native 
tree cover of the operational definition. The remaining segments of the preliminary map 
were considered to be correctly classified for both the "Native forest" class (Figure 10(b, 
c, d); green segments) and the "Non-forest" class.  
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Figure 10: Example of the post-classification editing process: a) Sentinel-2 subscene in true color display; 
b) preliminary result of the native forest map (in green); c) preliminary result, highlighting misclassified
segments, as Native Forest (in orange) and as Non-forest (in purple); d) post-editing result of the native

forest map (in green). 

The necessary modifications (changes from one class to another) were made directly in 
the      shapefile table containing the segments      with QGIS software. Once the segment 
editing was completed, a post-processing stage of the map was carried out, where 
geometric and topological corrections were also performed in QGIS.      

2.3.4. Accuracy assessment 
The last step consists of validating or assessing the resulting map to estimate the 
accuracy of the classification. The "Validation of Uruguay's Native Forest Mapping 
through Sentinel 2021 imagery" report outlines the methodological details and results. 

The thematic accuracy assessment consists of comparing the information on the map 
with reference information considered highly reliable. This reference information is 
typically based on verification site sampling, where the classification is obtained from 
field observations or more detailed satellite image analysis than those used to generate 
the map (Peralta-Higuera et al., 2001).       
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To accomplish this, a reference or "ground truth" information source was used, which 
consisted of independent land cover data with higher spatial resolution than the one 
used for generating the classification. This reference information was obtained from 
sources such as Google Earth imagery, ESRI data, or aerial orthophotos from the IDEUy. 
It should be noted that although the IDEUy nationwide aerial photography survey was 
conducted during the 2017-2018 period, the aerial photographs taken have very      high 
definition (spatial resolution of 0.2 meters). 

The accuracy assessment was carried out by random sampling by class, considering the 
map segments as the unit of analysis. For each segment of the validation sample, the 
class assigned in the native forest cover map was compared with the class set based on 
the visual interpretation of the high-resolution images (reference information or 
"ground truth"). Based on these      results, the confusion matrix was constructed, and 
the overall accuracy percentage, producer's and user's accuracy of the map were 
calculated, along with their corresponding confidence intervals (Olofsson et al., 2014).    

3. RESULTS

The following map (Figure 11) of Uruguay's native forest cover in 2021 was produced 
based on the above methodology (highlighted for better visualization). The map shows 
that native forests cover an area of 847,181 ha, which accounts for approximately 4.84% 
of the total land area of the country. 

Figures 12-15 also show two larger-scale views of the final map for two sample sites with 
native forest cover, using very high-resolution aerial imagery      (IDEUy) as      basemap 
.  
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Figure 11: 2021 Native forest cover in Uruguay. 
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Figure 12: Aerial orthophotos (IDEUy) of a sample site with native riparian forest and forest plantation 
cover. 

Figure 13: Mapping results (in green) on aerial orthophotos (IDEUy) of a sample site with native riparian 
forest and forest plantation cover. 
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Figure 14: Aerial orthophotos (IDEUy) of a sample site with ravine native       forest cover. 

Figure 15: Mapping results (in green) on aerial orthophotos (IDEUy) of a sample site with ravine native 
stream forest cover.  
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3.1. Accuracy assessment 

As mentioned above, the "Validation of Uruguay's Native Forest Mapping through 
Sentinel 2021 imagery" report outlines the accuracy assessment results.  
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